A Phylogenetically Informed Comparison of GH1 Hydrolases between Arabidopsis and Rice Response to Stressors
نویسندگان
چکیده
Glycoside hydrolases Family 1 (GH1) comprises enzymes that can hydrolyze β-O-glycosidic bond from a carbohydrate moiety. The plant GH1 hydrolases participate in a number of developmental processes and stress responses, including cell wall modification, plant hormone activation or deactivation and herbivore resistance. A large number of members has been observed in this family, suggesting their potential redundant functions in various biological processes. In this study, we have used 304 sequences of plant GH1 hydrolases to study the evolution of this gene family in plant lineage. Gene duplication was found to be a common phenomenon in this gene family. Although many members of GH1 hydrolases showed a high degree of similarity in Arabidopsis and rice, they showed substantial tissue specificity and differential responses to various stress treatments. This differential regulation implies each enzyme may play a distinct role in plants. Furthermore, some of salt-responsive Arabidopsis GH1 hydrolases were selected to test their genetic involvement in salt responses. The knockout mutants of AtBGLU1 and AtBGLU19 were observed to be less-sensitive during NaCl treatment in comparison to the wild type seedlings, indicating their participation in salt stress response. In summary, Arabidopsis and rice GH1 glycoside hydrolases showed distinct features in their evolutionary path, transcriptional regulation and genetic functions.
منابع مشابه
Genomic basis for cell-wall diversity in plants. A comparative approach to gene families in rice and Arabidopsis.
Monocotyledons and dicotyledons are distinct, not only in their body plans and developmental patterns, but also in the structural features of their cell walls. The recent completion of the rice (Oryza sativa) genomic sequence and publication of the sequence data, together with the completed database of the Arabidopsis thaliana genome, provide the first opportunity to compare the full complement...
متن کاملIsolation and molecular characterization of the RecQsim gene in Arabidopsis, rice (Oryza sativa) and rape (Brassica napus)
In any organism that reproduces sexually, DNA Recombination plays vital roles in the generation of allelic diversity as well as in preservation of genome fidelity. Genome fidelity is particularly important in plants because mutations occurring during the development of flowering plants are heritable and can be passed onto the next generation. One of the gene families that play crucial roles in ...
متن کاملHow unique is the low oxygen response? An analysis of the anaerobic response during germination and comparison with abiotic stress in rice and Arabidopsis
Plants face a variety of environmental stresses and have evolved molecular mechanisms to survive these challenges. One of these stresses is low oxygen conditions, which can occur under flooding conditions. Rice (Oryza sativa) is somewhat unique for its ability to tolerate and even germinate under low to no oxygen conditions. In this study, we examined global transcriptomic responses over the co...
متن کاملThe Phylogenetically-Related Pattern Recognition Receptors EFR and XA21 Recruit Similar Immune Signaling Components in Monocots and Dicots
During plant immunity, surface-localized pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns (PAMPs). The transfer of PRRs between plant species is a promising strategy for engineering broad-spectrum disease resistance. Thus, there is a great interest in understanding the mechanisms of PRR-mediated resistance across different plant species. Two well-characteriz...
متن کاملIsolation of Brassica napus MYC2 gene and analysis of its expression in response to water deficit stress
Manipulation of stress related transcription factors to improve plant stress tolerance is a major goal of current biotechnology researches. MYC2 gene encodes a key stress-related transcription factor involved in Jasmonate (JA) and abscisic acid (ABA) signaling pathways in Arabidopsis. Brassica napus, as a globally important oilseed crop, is a close relative of Arabidopsis. In the present study...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017